

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF COMPUTING AND INFORMATICS

DEPARTMENT OF COMPUTER SCIENCE

QUALIFICATION : BACHELOR OF COMPUTER SCIENCE IN (CYBER SECURITY)			
QUALIFICATION CODE: 07BCCS	LEVEL: 6		
COURSE: NETWORK SECURITY	COURSE CODE: NWS620S		
DATE: JULY 2019	PAPER: THEORY		
DURATION: 2 hours	MARKS: 60		

SUPPLEMENTARY/ SECOND OPPORTUNITY EXAMINATION QUESTION PAPER		
Mrs. Mercy Chitauro		
Mr. Joel Eelu		

THIS EXAMINATION PAPER CONSISTS OF 2 PAGES

(Excluding this front page)

INSTRUCTIONS

- 1. Answer all questions.
- 2. When writing take the following into account: The style should inform than impress, it should be formal, in third person, paragraphs set out according to ideas or issues and the paragraphs flowing in a logical order. Information provided should be brief and accurate.
- 3. Please, ensure that your writing is legible, neat and presentable.
- 4. When answering questions you should be led by the allocation of marks. Do not give too few or too many facts in your answers.
- 5. Number your answers clearly according to the question paper numbering.
- 6. Clearly mark rough work as such or cross it out unambiguously in ink.

PERMISSIBLE MATERIALS

1. Calculator.

1. Message Authentication

- a. What security measure is required when you need to protect against falsification of data? [1]
- b. What three things are verified to prove message authentication? [3]
- c. Why is encryption alone not suitable for data authentication? [2]
- d. Explain three uses for public key-systems [3]

2. Use Figure 1 to answer the following questions

Figure 1: Bakers Fresh Branch Connection

- a. Highlight four Pretty Good Privacy (PGP) services that are availed to email users in the 172.16.0.0/16 and 172.18.0.0/16 networks. [2]
- b. Explain how PGP encrypts a message sent from user at 172.16.0.253 to user at 172.18.5.13 [2]
- c. Does the user at 172.18.5.13 have the key used for encryption before the message is transmitted? [1]
- d. Explain your answer in '4c'. [3]
- e. Secure/Multipurpose Internet Mail Extension (S/MIME) is another email security standard. S/MIME provides which security services for a MIME? [2]
- f. Worms are typically attached to electronic mails so that they access remote systems and replicate.
 - i. What is a worm? [2]
 - ii. Which other means do worms use to access remote sites besides attaching to emails?
- g. In a worm's lifetime it goes through the same phases as that of a virus. Explain the difference between worm's propagation phase and a virus's propagation phase.

[4]

- 3. The SSL Record Protocol provides confidentiality and message integrity security services for SSL connections.
 - a. Which 2 services does the SSL Record Protocol provides for SSL connections? [2]
 - b. Which method does SSL use to get message integrity? [1]
 - c. Using your knowledge of SSL. Explain how SSL circumvents the attack given.

	 i. Brute-force cryptanalytic attack: An exhaustive search of the key sp 				
			a conventional encryption algorithm.	[2]	
		ii.	Man-in-the-middle attack: An attacker interposes during key	exchange	
			acting as the client to the server and as the server to the client.	[2]	
		iii.	Password sniffing: Passwords in HTTP or other application	traffic are	
			eavesdropped.	[2]	
d. When Change Cipher			Change Cipher spec protocol value is set to one; what happens?	[2]	
e. One stage of SSL operation involves the use MAC. What is differen				this stage	
		compa	ared with TLS?	[2]	
4.	4. Kerberos				
	a.	Descri	be briefly how Kerberos works.	[4]	
	b.	Why is	s the ticket granting ticket non-corruptible?	[2]	
	c.	What i	is the use of a timestamp in a ticket granting ticket?	[1]	
	d.	A publ	ic key certificate consists of a public key plus a user ID of the key	owner,	
		with th	ne whole block signed by a trusted third party		
		i.	Explain "trusted third party".	[2]	
		ii.	How does a user obtain a public key certificate?	[2]	
5.	Cryptolocker is a malware released in September 2013, CryptoLocker spread through				
	email attachments and encrypted the user's files so that they couldn't access them. The				
	hackers then sent a decryption key in return for a sum of money, usually somewhere				
	d pounds up to a couple of grand (Norton.com, 2017).				

- a few hundred pounds up to a couple of grand (Norton.com, 2017).a. Viruses typically have 3 components. State and explain the three components of a virus
 - b. Give an example of each virus component in the context of Cryptolocker virus.

[3]

Good luck!!